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Langevin description of the response of a stochastic mean-field model driven
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We analyze the dynamical response of a nonlinear stochastic model with mean-field coupling
driven by a time-sinusoidal external field. The Langevin equation for the model is solved numerically,
and the results indicate the possibility of observing stochastic resonant amplification of the driving
amplitude. The influence of the mean-field coupling on the typical stochastic resonance effects is

pointed out.
PACS number(s): 05.40.+j, 02.50.—r

The subject of amplification of an external signal by
stochastic systems has been an active field of research
in recent years [1]. In particular, within the context of
stochastic resonance, a great deal of work has been de-
voted to the analysis of the response of a stochastic sym-
metric bistable system in the limit of very large damping.
In this work we are interested in the study of the stochas-
tic amplification in a driven system that exhibits, in the
thermodynamic limit, an order-disorder phase transition.
The model consists of very many subunits with mean-
field interactions between them. It was introduced by
Kometani and Shimizu [2] within the context of muscle
contraction, and a more statistical mechanical treatment
was later given by Desai and Zwanzig [3] and by Dawson
[4] which pointed out its relation with the Weiss-Ising
model.

In the limit of a very large number of subunits, and
in the presence of a driving force, the order parameter x
satisfies the Langevin equation

&(t) = (1 — 0)z(t) — z3(t) + Acos Qt + 0{z(t)) + £(2),
(1)

where £(t) is a white Gaussian noise with zero mean and
(&(t)€(s)) = 2D4(t — s), 0 represents the strength of the
mean-field coupling among the subunits, and A cosQt
represents the effect of the driving field. (z(t)) is the
average of z(t). This Langevin equation can be thought
of as describing the Brownian motion of a particle in an
effective potential U.yy,

Uess (e, (2(0),8) = (0 - 1) 5 + 5 = O(a()e
—Azx cos Qt, (2)

which depends upon the state of the system through the
average (x(t)). The effect of the mean-field coupling is
twofold: it changes the curvature of the extrema of the
function U.ss and it might render it asymmetric. One
can also look at U.ss as a symmetric double well with a
barrier height which depends upon @, and is subject to
a time-dependent perturbation which makes it asymmet-
ric.

When 6 = 0, i.e.,when the mean-field interaction is
absent, each subunit evolves in time separately, according
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to the Langevin equation (1) with § = 0. In this case,
one has a situation which has been repeatedly studied
by many authors as an archetypical case for stochastic
resonance. It should be pointed out that even though the
Langevin equation is still nonlinear, the corresponding
Fokker-Planck equation (FPE) is linear in the probability
density. A perturbative analysis of this linear FPE for a
driven system, based on eigenfunction expansions and the
Floquet theory, was given in Ref. [5], where it is shown
that the system has the mixing property and the long-
time solution, which is time dependent, is always reached
regardless of the initial condition.

When 6 # 0, the FPE corresponding to the Langevin
description is nonlinear in the probability density and
the system presents an order-disorder phase transition.
In the absence of the driving field (4 = 0), and for each
value of 6, there exists a value of the noise strength D,,
so that for D > D, there is just one stable equilibrium
distribution function for the stochastic variable x, with
(z)eq = 0, while for D < D, there are two stable equi-
librium distributions with (z)e, = Fzo with zo depend-
ing on @ and D. Thus, at the critical line, there is a
bifurcation of the equilibrium probablity density. For
D < D, the equilibrium distribution is always single
peaked, while for D > D, the stable equilibrium dis-
tribution has either two or one maxima depending on
whether 6 is less than or larger than 1. The phase dia-
gram is sketched in Fig. 1 in terms of the reduced variable
|2 = |6 — 1/(2D)~}.

A few years ago, Shiino was able to prove an H theo-
rem for the nonlinear Fokker-Planck equation for the un-
driven system [6]. Therefore, in the long-time limit, the
system always reaches stationary situations characterized
by time-independent equilibrium distributions. Clearly,
for a given @ and D > D, the equilibrium situation is
unique, regardless of the initial condition. On the other
hand, for D < D, there are two stable equilibrium solu-
tions and, in the long-time limit, the system reaches one
or the other depending upon the initial preparation of
the system. In this sense, we can say that the mean-field
interaction breaks the ergodicity of the process.

When a time-dependent field is present, we have not
been able to extend Shiino’s H theorem. On the other
hand, the nonlinearity of the Fokker-Planck dynamics
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FIG. 1. Equilibrium phase diagram for the model. The
dashed line is the critical line. The insets are sketches of the
different U.ss for (z) = (z)eq-

prevents us from making use of the Floquet theory. For
very weak driving amplitudes, the long-time behavior of
the system can be understood by using first order per-
turbation theory. In this limit, the system describes
long-time oscillations about the corresponding equilib-
rium values. The external field is not able to restore the
ergodicity of the process and there are still two discon-
nected distribution functions for points above the critical
line. A detailed analysis of the linear response of the sys-
tem, based on a perturbative analysis of the correspond-
ing nonlinear Fokker-Planck equation, will be carried out
elsewhere [7]. In this paper, in order to analyze the re-
sponse of the system to a driving field (not necessarily
very weak), we have resorted to the numerical solution of
the Langevin equation, by generating a sufficiently large
number of stochastic trajectories (5000 in most cases)
and averaging over them. This technique was previously
used by us in an analysis of the model in the absence of
the external field and the details can be found in Ref.
[8]. We will restrict our simulation to # < 1, as this is
the region for which bimodal distribution functions exist
and the phenomenon of stochastic resonance is expected.

Let us first consider the results of the numerical simula-
tion for A = 0.1, 2 = 0.1, and 6 = 0.1. The noise average
(z(t)) shows oscillatory behavior for long times. Away
from the critical line the centers of the oscillations are the
corresponding equilibrium values, while near the critical
line, they are slightly shifted with respect to (z)eq. In
Fig. 2 the amplitude of the oscillations is plotted versus
|z]. Also the critical value |z.| is indicated. For |z| > |z|
(i-e., D rather small), the amplitude of the oscillations is
roughly the same as the amplitude of the driving field.
The system is in a region where the distribution has a
single maximum and, thus, one should expect that the
external driving simply induces small oscillations about
the minimum of the well. On the other hand, as soon
as |z| gets smaller than |z.| (i.e., D increases), the effec-
tive potential affecting the order parameter has two wells.
Noise can induce transitions among these wells and we
have a possibility of amplification of the signal, as the
results indicate. The maximum amplification takes place
at D =~ 0.14 (|z| = 1.7). For this value of the noise, we
have that twice the Kramers frequency as given by
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FIG. 2. Amplitude of (z(t)) as a function of |z| for
A =0.1,6 =0.1, and Q = 0.1. The arrow marks the value of
|ze]-

2w = Y2(1 = D)exp (-3) 3)

is approximately 0.095, a value not too different from the
external frequency. This indicates that for small values
of 6, the stochastic resonance mechanism in a mean-field
model is not too different from the usual one in the ab-
sence of mean-field coupling.

In Fig. 3 we show the amplitude of the oscillations
about the corresponding equilibrium values for a larger
strength of the mean-field coupling, § = 0.5, and for ex-
ternal field parameters A = 0.05 and Q2 = 0.35. The am-
plitude of the driving field has been reduced with respect
to its value in Fig. 2, due to the fact that, as 6 increases,
the height of the barrier of the symmetric double well is
decreased. Thus, in order to analyze the response to a
weak field, A must be reduced accordingly. We notice
that there is still an enhancement of the response with
respect to the input signal, but this enhancement is now
smaller than in the previous case, due to the larger value
of the driving frequency. The maximum amplification
takes place at D = 0.3, a value which is rather large
for the Kramers formula, given by Eq. (2), to apply.
Our results indicate that, as 6 is increased, the hopping
mechanism between wells is influenced by the mean-field
interaction.
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FIG. 3. Amplitude of (z(t)) as a function of |z| for
A = 0.05,0 = 0.5, and Q = 0.35. The arrow marks the

value of |zc|.
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Next we analyze the response of the system to a rather
strong driving force. In Fig. 4, we show the behavior
of the amplitude of the response with respect to |z| for
6 = 0.5, © = 0.1, and A=0.2. For |z| greater than |z.|,
the interesting feature is that the system’s response is
not really periodic in time for |z.| < [z| < 1.2. In the
absence of external driving there exist two distinct stable
distribution functions in this range of parameters. The
external driving seems to connect them in such a way that
the system switches between them. One could think that
a strong enough external field would be able to restore
the ergodicity of the process. But this is not the case as,
for sufficiently large |z| (|z| > 1.2), the response of the
system is again periodic in time, with oscillations around
one of the two stable equilibrium average values. For
these values of |z|, one can still consider that the two
different distributions exist. Thus, we believe that what
happens is that the position of the critical line depends
upon the value of A and it is shifted noticeably with
respect to the undriven case for large external driving
forces.

In conclusion, our numerical study of the Langevin
equation of the model shows that the phenomenon of
noise amplification of a weak signal is still present in the
mean-field model. For small 6, the mechanism of amplifi-
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FIG. 4. Amplitude of (z(t)) as a function of |z| for

A =0.2,6 =0.5, and Q = 0.1. The arrow marks the value of
|ze]-

cation is similar to the one leading to stochastic resonance
in the usual bistable model (6 = 0). On the other hand,
as 0 is increased, the hopping mechanism between wells
is influenced by the mean-field coupling.
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